MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω           .





Em mecânica quântica, a equação de Klein–Gordon é a versão relativista da equação de Schrödinger.[1] Algumas vezes chamada de Klein–Fock–Gordon ou Klein–Gordon–Fock.

É a equação de movimento de um campo escalar ou pseudo-escalar quântico. Este campo descreve partículas sem spin. Esta equação não corresponde a uma densidade de probabilidade definida positiva e além disso é de segunda ordem na derivada temporal, o que impede uma interpretação física simples. Ela descreve uma partícula pontual que se propaga nos dois sentidos temporais e a sua interpretação é possível recorrendo à teoria de antipartículas desenvolvida por Feynman e Stueckelberg. Todas soluções da equação de Dirac são soluções da equação de Klein-Gordon, mas o inverso é falso.

A equação

A equação de Klein–Gordon é derivada aplicando o processo de quantização a relação de energia relativística para uma partícula livre:

  / = [          ]     c     .


fazendo as identificações padrão  e , em unidades SI se obtém a forma:

  / = [          ]     c     .

que também é frequentemente reescrita de forma mais compacta utilizando o operador d'alembertiano  e em unidades naturais:

   / = [          ]     c     .

No contexto de Teoria Quântica de Campos, a equação também pode ser derivada aplicando a equação de Euler-Lagrange para campos:

  / = [          ]     c     .

em que a convenção de soma de Einstein está em uso, à seguinte densidade de lagrangiana:

  / = [          ]     c     .

Neste contexto, após o processo de segunda quantização, se diz que este campo de Klein-Gordon descreve bósons sem carga, sem spin de massa m.

Versão Complexa
[editar | editar código-fonte]

Há uma versão complexa do campo de Klein-Gordon podendo ser derivada da densidade de Lagrangiana:

  / = [          ]     c     .

satisfazendo:

  / = [          ]     c     .

A este campo  estão associados bósons com carga, sem spin de massa m.[2]







equação de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecularfísica nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).

A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.

A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para  e outra para ):

 
  / = [          ]     c     .

Nas equações acima,  é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia  descreve a interação entre os dois sistemas em colisão. O Hamiltoniano  descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são  e seus autovalores são as energias . Finalmente,  é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.







equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.

A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.

A equação de Pauli é mostrada como:

 
  / = [          ]     c     .

Onde:

  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.
  •  são os dois componentes spinor da onda, podem ser representados como .

De forma mais precisa, a equação de Pauli é:

 
  / = [          ]     c     .

Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes  de Pauli.

Comments

Popular posts from this blog