MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/* = = [ ] ω , , .=
Em mecânica quântica, a equação de Klein–Gordon é a versão relativista da equação de Schrödinger.[1] Algumas vezes chamada de Klein–Fock–Gordon ou Klein–Gordon–Fock.
É a equação de movimento de um campo escalar ou pseudo-escalar quântico. Este campo descreve partículas sem spin. Esta equação não corresponde a uma densidade de probabilidade definida positiva e além disso é de segunda ordem na derivada temporal, o que impede uma interpretação física simples. Ela descreve uma partícula pontual que se propaga nos dois sentidos temporais e a sua interpretação é possível recorrendo à teoria de antipartículas desenvolvida por Feynman e Stueckelberg. Todas soluções da equação de Dirac são soluções da equação de Klein-Gordon, mas o inverso é falso.
A equação
A equação de Klein–Gordon é derivada aplicando o processo de quantização a relação de energia relativística para uma partícula livre:
/* = = [ ], c .=
fazendo as identificações padrão e , em unidades SI se obtém a forma:
- /* = = [ ], c .=
que também é frequentemente reescrita de forma mais compacta utilizando o operador d'alembertiano e em unidades naturais:
/* = = [ ], c .=
No contexto de Teoria Quântica de Campos, a equação também pode ser derivada aplicando a equação de Euler-Lagrange para campos:
/* = = [ ], c .=
em que a convenção de soma de Einstein está em uso, à seguinte densidade de lagrangiana:
. /* = = [ ], c .=
Neste contexto, após o processo de segunda quantização, se diz que este campo de Klein-Gordon descreve bósons sem carga, sem spin de massa m.
Versão Complexa
[editar | editar código-fonte]Há uma versão complexa do campo de Klein-Gordon podendo ser derivada da densidade de Lagrangiana:
/* = = [ ], c .=
satisfazendo:
/* = = [ ], c .=
A este campo estão associados bósons com carga, sem spin de massa m.[2]
A equação de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecular, física nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).
A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.
A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para e outra para ):
- /* = = [ ], c .=
Nas equações acima, é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia descreve a interação entre os dois sistemas em colisão. O Hamiltoniano descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são e seus autovalores são as energias . Finalmente, é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.
A equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.
A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.
Detalhes
[editar | editar código-fonte]A equação de Pauli é mostrada como:
- /* = = [ ], c .=
Onde:
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- são os dois componentes spinor da onda, podem ser representados como .
De forma mais precisa, a equação de Pauli é:
- /* = = [ ], c .=
Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes de Pauli.
Comments
Post a Comment